Pathway analysis approaches for rare and common variants: insights from Genetic Analysis Workshop 18.
نویسندگان
چکیده
Pathway analysis, broadly defined as a group of methods incorporating a priori biological information from public databases, has emerged as a promising approach for analyzing high-dimensional genomic data. As part of Genetic Analysis Workshop 18, seven research groups applied pathway analysis techniques to whole-genome sequence data from the San Antonio Family Study. Overall, the groups found that the potential of pathway analysis to improve detection of causal variants by lowering the multiple-testing burden and incorporating biologic insight remains largely unrealized. Specifically, there is a lack of best practices at each stage of the pathway approach: annotation, analysis, interpretation, and follow-up. Annotation of genetic variants is inconsistent across databases, incomplete, and biased toward known genes. At the analysis stage insufficient statistical power remains a major challenge. Analyses combining rare and common variants may have an inflated type I error rate and may not improve detection of causal genes. Inclusion of known causal genes may not improve statistical power, although the fraction of explained phenotypic variance may be a more appropriate metric. Interpretation of findings is further complicated by evidence in support of interactions between pathways and by the lack of consensus on how to best incorporate functional information. Finally, all presented approaches warranted follow-up studies, both to reduce the likelihood of false-positive findings and to identify specific causal variants within a given pathway. Despite the initial promise of pathway analysis for modeling biological complexity of disease phenotypes, many methodological challenges currently remain to be addressed.
منابع مشابه
Identifying rare disease variants in the Genetic Analysis Workshop 17 simulated data: a comparison of several statistical approaches
Genome-wide association studies have been successful at identifying common disease variants associated with complex diseases, but the common variants identified have small effect sizes and account for only a small fraction of the estimated heritability for common diseases. Theoretical and empirical studies suggest that rare variants, which are much less frequent in populations and are poorly ca...
متن کاملRare variant collapsing in conjunction with mean log p-value and gradient boosting approaches applied to Genetic Analysis Workshop 17 data
In addition to methods that can identify common variants associated with susceptibility to common diseases, there has been increasing interest in approaches that can identify rare genetic variants. We use the simulated data provided to the participants of Genetic Analysis Workshop 17 (GAW17) to identify both rare and common single-nucleotide polymorphisms and pathways associated with disease st...
متن کاملComparison of multilevel modeling and the family-based association test for identifying genetic variants associated with systolic and diastolic blood pressure using Genetic Analysis Workshop 18 simulated data
Identifying genetic variants associated with complex diseases is an important task in genetic research. Although association studies based on unrelated individuals (ie, case-control genome-wide association studies) have successfully identified common single-nucleotide polymorphisms for many complex diseases, these studies are not so likely to identify rare genetic variants. In contrast, family-...
متن کاملDetecting functional rare variants by collapsing and incorporating functional annotation in Genetic Analysis Workshop 17 mini-exome data
Association studies using tag SNPs have been successful in detecting disease-associated common variants. However, common variants, with rare exceptions, explain only at most 5-10% of the heritability resulting from genetic factors, which leads to the common disease/rare variants assumption. Indeed, recent studies using sequencing technologies have demonstrated that common diseases can be due to...
متن کاملPathway-based joint effects analysis of rare genetic variants using Genetic Analysis Workshop 17 exon sequence data
Pathway-based analysis has been recently used in joint tests of association between disease and a group of common genetic variants. Here we explore this idea for the joint effects analysis of rare genetic variants and their association with quantitative traits and disease. We accumulate multiple rare minor alleles in a genetic risk score for each individual in a given pathway; this score is the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetic epidemiology
دوره 38 Suppl 1 شماره
صفحات -
تاریخ انتشار 2014